Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2309842121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194447

RESUMO

Cardiac contractions and hemodynamic forces are essential for organ development and homeostasis. Control over cardiac contractions can be achieved pharmacologically or optogenetically. However, these approaches lack specificity or require direct access to the heart. Here, we compare two genetic approaches to control cardiac contractions by modulating the levels of the essential sarcomeric protein Tnnt2a in zebrafish. We first recombine a newly generated tnnt2a floxed allele using multiple lines expressing Cre under the control of cardiomyocyte-specific promoters, and show that it does not recapitulate the tnnt2a/silent heart mutant phenotype in embryos. We show that this lack of early cardiac contraction defects is due, at least in part, to the long half-life of tnnt2a mRNA, which masks the gene deletion effects until the early larval stages. We then generate an endogenous Tnnt2a-eGFP fusion line that we use together with the zGRAD system to efficiently degrade Tnnt2a in all cardiomyocytes. Using single-cell transcriptomics, we find that Tnnt2a depletion leads to cardiac phenotypes similar to those observed in tnnt2a mutants, with a loss of blood and pericardial flow-dependent cell types. Furthermore, we achieve conditional degradation of Tnnt2a-eGFP by splitting the zGRAD protein into two fragments that, when combined with the cpFRB2-FKBP system, can be reassembled upon rapamycin treatment. Thus, this Tnnt2a degradation line enables non-invasive control of cardiac contractions with high spatial and temporal specificity and will help further understand how they shape organ development and homeostasis.


Assuntos
Perciformes , Peixe-Zebra , Animais , Peixe-Zebra/genética , Degrons , Miócitos Cardíacos , Alelos
2.
Nat Commun ; 13(1): 1176, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246556

RESUMO

To maintain cellular identities during development, gene expression profiles must be faithfully propagated through cell generations. The reestablishment of gene expression patterns upon mitotic exit is mediated, in part, by transcription factors (TF) mitotic bookmarking. However, the mechanisms and functions of TF mitotic bookmarking during early embryogenesis remain poorly understood. In this study, taking advantage of the naturally synchronized mitoses of Drosophila early embryos, we provide evidence that GAGA pioneer factor (GAF) acts as a stable mitotic bookmarker during zygotic genome activation. We show that, during mitosis, GAF remains associated to a large fraction of its interphase targets, including at cis-regulatory sequences of key developmental genes with both active and repressive chromatin signatures. GAF mitotic targets are globally accessible during mitosis and are bookmarked via histone acetylation (H4K8ac). By monitoring the kinetics of transcriptional activation in living embryos, we report that GAF binding establishes competence for rapid activation upon mitotic exit.


Assuntos
Cromatina , Histonas , Acetilação , Animais , Cromatina/genética , Drosophila/genética , Histonas/genética , Histonas/metabolismo , Mitose/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nat Genet ; 53(4): 477-486, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33795867

RESUMO

Acquisition of cell fate is thought to rely on the specific interaction of remote cis-regulatory modules (CRMs), for example, enhancers and target promoters. However, the precise interplay between chromatin structure and gene expression is still unclear, particularly within multicellular developing organisms. In the present study, we employ Hi-M, a single-cell spatial genomics approach, to detect CRM-promoter looping interactions within topologically associating domains (TADs) during early Drosophila development. By comparing cis-regulatory loops in alternate cell types, we show that physical proximity does not necessarily instruct transcriptional states. Moreover, multi-way analyses reveal that multiple CRMs spatially coalesce to form hubs. Loops and CRM hubs are established early during development, before the emergence of TADs. Moreover, CRM hubs are formed, in part, via the action of the pioneer transcription factor Zelda and precede transcriptional activation. Our approach provides insight into the role of CRM-promoter interactions in defining transcriptional states, as well as distinct cell types.


Assuntos
Linhagem da Célula/genética , Cromatina/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Genômica , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Análise de Célula Única , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Science ; 372(6544): 840-844, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33927056

RESUMO

Much is known about the factors involved in the translation of messenger RNA (mRNA) into protein; however, this multistep process has not been imaged in living multicellular organisms. Here, we deploy the SunTag method to visualize and quantify the timing, location, and kinetics of the translation of single mRNAs in living Drosophila embryos. By focusing on the translation of the conserved major epithelial-mesenchymal transition-inducing transcription factor Twist, we identify spatial heterogeneity in mRNA translation efficiency and reveal the existence of translation factories, where clustered mRNAs are cotranslated preferentially at basal perinuclear regions. Observing the location and dynamics of mRNA translation in a living multicellular organism opens avenues for understanding gene regulation during development.


Assuntos
Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Imagem Individual de Molécula/métodos , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cinética , RNA Mensageiro/genética
6.
Curr Opin Syst Biol ; 11: 41-49, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30417158

RESUMO

During development, transcriptional properties of progenitor cells are stably propagated across multiple cellular divisions. Yet, at each division, chromatin faces structural constraints imposed by the important nuclear re-organization operating during mitosis. It is now clear that not all transcriptional regulators are ejected during mitosis, but rather that a subset of transcription factors, chromatin regulators and epigenetic histone marks are able to 'bookmark' specific loci, thereby providing a mitotic memory. Here we review mechanisms of mitotic bookmarking and discuss their impact on transcriptional dynamics in the context of multicellular developing embryos. We document recent discoveries and technological advances, and present current mathematical models of short-term transcriptional memory.

7.
Nucleic Acids Res ; 46(D1): D718-D725, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29149270

RESUMO

ANISEED (www.aniseed.cnrs.fr) is the main model organism database for tunicates, the sister-group of vertebrates. This release gives access to annotated genomes, gene expression patterns, and anatomical descriptions for nine ascidian species. It provides increased integration with external molecular and taxonomy databases, better support for epigenomics datasets, in particular RNA-seq, ChIP-seq and SELEX-seq, and features novel interactive interfaces for existing and novel datatypes. In particular, the cross-species navigation and comparison is enhanced through a novel taxonomy section describing each represented species and through the implementation of interactive phylogenetic gene trees for 60% of tunicate genes. The gene expression section displays the results of RNA-seq experiments for the three major model species of solitary ascidians. Gene expression is controlled by the binding of transcription factors to cis-regulatory sequences. A high-resolution description of the DNA-binding specificity for 131 Ciona robusta (formerly C. intestinalis type A) transcription factors by SELEX-seq is provided and used to map candidate binding sites across the Ciona robusta and Phallusia mammillata genomes. Finally, use of a WashU Epigenome browser enhances genome navigation, while a Genomicus server was set up to explore microsynteny relationships within tunicates and with vertebrates, Amphioxus, echinoderms and hemichordates.


Assuntos
Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genoma , Urocordados/genética , Animais , Evolução Biológica , Ciona intestinalis/genética , DNA/metabolismo , Mineração de Dados , Evolução Molecular , Expressão Gênica , Ontologia Genética , Internet , Anotação de Sequência Molecular , Filogenia , Ligação Proteica , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Transcrição Gênica , Vertebrados/genética , Navegador
8.
PLoS Genet ; 11(3): e1005092, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25816335

RESUMO

Oculopharyngeal muscular dystrophy (OPMD), a late-onset disorder characterized by progressive degeneration of specific muscles, results from the extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice are established, the molecular mechanisms behind OPMD remain undetermined. Here, we show, using Drosophila and mouse models, that OPMD pathogenesis depends on affected poly(A) tail lengths of specific mRNAs. We identify a set of mRNAs encoding mitochondrial proteins that are down-regulated starting at the earliest stages of OPMD progression. The down-regulation of these mRNAs correlates with their shortened poly(A) tails and partial rescue of their levels when deadenylation is genetically reduced improves muscle function. Genetic analysis of candidate genes encoding RNA binding proteins using the Drosophila OPMD model uncovers a potential role of a number of them. We focus on the deadenylation regulator Smaug and show that it is expressed in adult muscles and specifically binds to the down-regulated mRNAs. In addition, the first step of the cleavage and polyadenylation reaction, mRNA cleavage, is affected in muscles expressing alanine-expanded PABPN1. We propose that impaired cleavage during nuclear cleavage/polyadenylation is an early defect in OPMD. This defect followed by active deadenylation of specific mRNAs, involving Smaug and the CCR4-NOT deadenylation complex, leads to their destabilization and mitochondrial dysfunction. These results broaden our understanding of the role of mRNA regulation in pathologies and might help to understand the molecular mechanisms underlying neurodegenerative disorders that involve mitochondrial dysfunction.


Assuntos
Proteínas Mitocondriais/genética , Distrofia Muscular Oculofaríngea/genética , Proteína I de Ligação a Poli(A)/genética , RNA Mensageiro/genética , Animais , Modelos Animais de Doenças , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas Mitocondriais/biossíntese , Músculo Esquelético/patologia , Distrofia Muscular Oculofaríngea/patologia , Proteína I de Ligação a Poli(A)/biossíntese , Poliadenilação/genética , RNA Mensageiro/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...